Activity- and target-dependent regulation of large-conductance Ca2+-activated K+ channels in developing chick lumbar motoneurons.

نویسندگان

  • Miguel Martin-Caraballo
  • Stuart E Dryer
چکیده

The functional expression of large-conductance (BK-type) Ca2+-activated K+ (K(Ca)) channels was examined in developing chick lumbar motoneurons (LMNs) between embryonic day 6 (E6) and E13 using patch-clamp recording techniques. The macroscopic K(Ca) current of E13 LMNs is inhibited by iberiotoxin and resistant to apamin. The average macroscopic K(Ca) density was low before E8 and increased 3.3-fold by E11, with an additional 1.8-fold increase occurring by E13. BK-type K(Ca) channels could not be detected in inside-out patches from E8 LMNs but were readily detected at E11. The density of voltage-activated Ca2+ currents did not change between E8 and E11. Surgical ablation of target tissues at E5 caused a significant reduction in average K(Ca) density in LMNs measured at E11. Conversely, chronic in ovo administration of d-tubocurarine, which causes an increase in motoneuron branching on the surface of the muscle target tissue, evoked a 1.8-fold increase in average LMN K(Ca) density measured at E11. Electrical activity also contributed to developmental regulation of LMN K(Ca) density. A significant reduction in E11 K(Ca) density was found after chronic in ovo treatment with the neuronal nicotinic antagonist mecamylamine or the GABA receptor agonist muscimol, agents that reduce activation of LMNs in ovo. Moreover, 3 d exposure to depolarizing concentrations of external K+ to LMNs cultured at E8 caused an increase in K(Ca) expression. Conversely, tetrodotoxin caused a decrease in K(Ca) expression in cultured E8 LMNs developing for 3 d in the presence of neurotrophic factors that promote neuronal survival in the absence of target tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glial cell line-derived neurotrophic factor and target-dependent regulation of large-conductance KCa channels in developing chick lumbar motoneurons.

The functional expression of large-conductance Ca2+-activated K+ (K(Ca)) channels in lumbar motoneurons (LMNs) of the developing chick embryo is regulated in part by interactions with striated muscle target tissues. Here we show that the functional expression of K(Ca) channels in LMNs developing in vitro can be stimulated by application of a skeletal muscle extract (MEX) or by coculture with hi...

متن کامل

Activity- and Target-Dependent Regulation of Large-Conductance Ca -Activated K Channels in Developing Chick Lumbar Motoneurons

The functional expression of large-conductance (BK-type) Ca -activated K (KCa ) channels was examined in developing chick lumbar motoneurons (LMNs) between embryonic day 6 (E6) and E13 using patch-clamp recording techniques. The macroscopic KCa current of E13 LMNs is inhibited by iberiotoxin and resistant to apamin. The average macroscopic KCa density was low before E8 and increased 3.3-fold by...

متن کامل

TGFbeta1 regulates the gating properties of intermediate-conductance KCa channels in developing parasympathetic neurons.

The developmental expression of Ca2+-activated K+ channels (KCa) in chick ciliary ganglion (CG) neurons is regulated by a target-derived avian isoform of TGFbeta1, which evokes a robust increase in the number of functional large-conductance (BK) KCa channels but which produces no change in their kinetics. However, CG neurons express multiple KCa channel subtypes. Here we show that TGFbeta1 regu...

متن کامل

A-current expression is regulated by activity but not by target tissues in developing lumbar motoneurons of the chick embryo.

The functional expression of A-type K+ channels (IA) was examined in chick lumbar motoneurons (LMNs) at embryonic days 6 and 11 (E6 and E11). We observed a threefold increase in IA density between E6 and E11 in spinal cord slices and acutely dissociated LMNs. There was no change in current density, kinetics, or voltage dependence of IA in E11 homozygous limbless mutants or in E11 embryos in whi...

متن کامل

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2002